KOOLIO DOCUMENTATION (May 2006 – August 2006):
PURPOSE:

· Koolio is a combination of R2D2 and a vending machine. His home is the Machine Intelligence Laboratory at the University of Florida. Faculty and students working in the Mechanical Engineering and Aerospace Building B (MAEB) can simply access the Internet to request that Koolio deliver a snack or a cold drink to their office. Koolio then leaves his docking station, navigates through the lab, and proceeds down the hallway, using cameras to find the correct office number, avoiding any obstacles in his path. After a successful delivery he returns to the docking station to await the next order and the process begins anew.

INTEGRATED SYSTEM:

· The majority of the data analysis and decision-making take place in an Atmega 128 processor. It is also responsible for monitoring sensors data and performing motor control. The single board computer is responsible for interaction with some of the other periphery. Figure 1 shows the hierarchy of these microprocessors.

[image: image1]
Figure 1. Block diagram of integrated system
ATMEGA 128:
· Description: The Atmega 128 MAVRIC IIB board handles all of the sensor interaction besides the cameras and executes all of the behaviors and decision making. The motor controller (MD03), the sonars (SRF08), and the compass (CMPS03) are all controlled using I2C. PORTD (pin 0,1) are designated for I2C and the board has a jumper to connect the internal pull up resistors. The I2C interface requires only one power, ground, clock and serial data line per device. Every I2C address can be programmed with a unique 8-bit address, making it possible to have multiple devices on one bus. To access a device the processor places the device address on the data line, and only the correct address will obey the following commands. Both of the encoders are hooked up to Input Capture pins of the Atmega 128. This way each rising edge of the input will generate an interrupt, and the encoder ticks can be counted. It communicates with the SBC using serial communication (UART0) at a baud rate of 9600. Higher baud rates did not work correctly.
· Datasheet: http://www.bdmicro.com/mavric-iib/mavric-iib.pdf
· Atmega 128 Port Assignments:

PORTA - LCD

PORTB - NOTHING

PORTC - NOTHING

PORTD- PIN0,1 - SDL,SCA, PIN4- IC1- RIGHT- CHA

PORTE- PIN7- IC3- LEFT- CHA

PORTF- NOTHING

PORTG- NOTHING

SINGLE BOARD COMPUTER:

· Description: The SBC is a NOVA-7896 and has Ubuntu 6.06 LTS Linux installed as the operating system. The SBC is responsible for communication with Koolio’s web site to receive the command to go a certain office (Dr. Schwartz, or Dr. Arroyo). The SBC also communicates with the Creative Video Blaster II Webcams and will eventually run the vision software once it is complete. A USB hub is plugged into one of the two USB ports, which allows both cameras and the wireless router to all connect to the same port. The SBC displays a face on Koolio’s monitor. Finally, the SBC will eventually run the AI reinforcement learning software, and simply take in sensor data from the Atmega128 serially and make all of the decisions from there.
· Datasheet: http://www.tracan.com/products/pdetail.php?v=32&c=56&p=773&x=2
· Troubleshooting:
· Always use Ctrl-C to exit the main program. If Ctrl-Z is used the port for communication will not be closed properly and communication will not work properly.
· If the SBC does not shut down properly, then after rebooting it again shut it down properly and start it again. Otherwise the wireless adapter does not work correctly.

· If the wireless adapter stops working, try unplugging and then plugging in the USB cord going into the router.
SONARS:

· Description: Koolio’s eights sonars are all SRF08, chosen for their compatibility with I2C. The six lower sonars (Back Left, Center Left, Center Right, Back Right, Back, and Top Center) are all used for obstacle avoidance. The top side sonars (Top Left, and Top Right) are used for wall following, detecting when to turn, and detection of doorways.
· Datasheet: http://www.robot-electronics.co.uk/htm/srf08tech.shtml

· Pinging: The sonars can only ping approximately once per second because only one can be pinged at a time. Experimentation was done with pinging all at the same time and lowering the analog gain, but the sonar pings interfered with each other. Even if the sonars are pinged in an interrupt executing every 10 us, the pinging time does not increase. Experimentation was also conducted in speeding up the I2C bus frequency, and lower the Range register of the sonars. None of these methods were successful.
· Sonar I2C Addresses:

Back Left- 0xE0
Center Left- 0xE2

Center Right- 0xE4

Back Right- 0xE6

Back- 0xE8

Top Left- 0xEA

Top Right- 0xEC

Top Center- 0xEE

Note: These addresses can be changed by using the function srf08_change_i2c_address(). Valid address ranges are: E0, E2, E4, E6, E8, EA, EC, EE, F0, F2, F4, F6, F8, FA, FC, or FE.

ENCODERS:
· Description: The US Digital S1-50 encoders were each connected to one of the gears in the gear train of each motor. The encoders use two-channel quadrature output and have fifty counts per revolution. The motors are geared down such that this equates to 416 counts per wheel revolution, leaving almost no room for error. Only Channel A of both of the encoders are being used. Ch. B simply leads or lags Ch. A, and helps determine the direction the wheel is moving. See the timing diagram for the encoders. The previous design incorporated a separate Atmega8 board to be solely dedicated to reading in encoder counts. It was found that it was much simpler to just have the main Atmega128 board read in the encoders.
· Datasheet: http://www.usdigital.com/products/s1s2/index.shtml
· Atmega 128 Pins:

PORTD – PIN4 – Input Capture 1- Right Encoder (Ch. A)

PORTE – PIN7 – Input Capture 3 - Left Encoder (Ch. A)

· Distance/PID Calculation: By using input capture, each time a rising edge occurs an interrupt occurs and an encoder counter is incremented. Every 0.1 seconds RIGHT_ENC_VALUE is used in PID calculations and the counter is set back to zero. There is also a second encoder counter (RIGHT_ENC_CNT) to be used to calculate total distance traveled. The circumference of the wheels are 16*pi inches and there are 416 counts/revolution. Thus, Koolio travels 16*pi/416 inches/count. When calculating the distance traveled the total number of counts from each wheel are taken and averaged and then multiplied by 16*pi/416. The functions Start_Distance_S(void) and Get_Distance_S(void) are used to get the distance traveled.
COMPASS:
· Description: The compass being used is a CMPS03 and is compatible with I2C. It returns an 8 bit number corresponding to the current bearing ranging from 0 – 255 for a full circle. This results in 3-4 degree accuracy of readings. The bearing can also be read as 16 bit word with 0 – 3599 for a full circle. The function bearing_8() returns the current 8 bit bearing. The I2C address is always C0. The compass is mounted atop the refrigerator to minimize noise from the motors. Furthermore, the refrigerator is a fairly level and stable surface, ensuring the most accurate compass readings possible.
· Datasheet: http://www.robot-electronics.co.uk/htm/cmps3doc.shtml
· Bearing Ranges: It was found that the bearing value ranges with where Koolio is located. For instance the value for North in the lab is around 190, and value in front of Schwartz office door is 200. These values also vary with time. A calibration of the compass can be performed using compass_calib(), but it does not alleviate this problem. The bearing ranges were found to be the following:
· North: 185 – 200
· South: 55 – 80
· East: 235 – 255, 0 – 15
· West: 130 – 140
· Other Problems: The function Turn_East() has caused some problems. It will occasionally misread and think that the bearing is not within the acceptable range. This results in Koolio occasion spinning in circle trying to get in the correct bearing range. It was found that setting the variable to read in the variable to zero before hand could somewhat alleviate the problem. Overall, the compass should be used as little as possible due the range in readings and other inaccuracies.
CAMERAS:

· Description: Two Creative Video Blaster II Webcams are used to identify room numbers as Koolio navigates hallways. These are USB cameras which plug into a USB hub and into one of the USB ports of the SBC. They have a CPIA based controller. Currently a program called gqcam is being used to capture frames from the camera. A second program called streamer can also be used to grab images and make video files.
· Datasheet: http://www.mil.ufl.edu/projects/koolio/Koolio/Datasheets/WCIIUSB_Parallel.pdf
· Problems: The current program, gqcam, to capture camera images does not work very well. It freezes frequently and does not always capture images. Other programs including camstream, camorama, motion, camsource, and vgrabbj were tried, but did not work with the cameras. How the interaction between the camera and the C program will work is something that needs to be completed. The streamer program also has bugs. I believe it is a hardware issue, perhaps with using the USB hub. Also, the vision library opencv was installed. However, the function to grab camera data did not work correctly. Cvcam, which is a part of opencv, was tried but requires a header file called “cvcam.h”. This header file was never installed and we cannot figure out how to install it.
BUMP RING:

· Description: A bump ring for Koolio needs to be created. A proposed idea is to surround Koolio with wire and have a card that wire makes contact with when hitting an object.
CHARGING STATION:

· Description: The electronics for the charging station have not been changed since the original design. They may still work. The mechanical design of the station needs to be changed.
PID:

[image: image2.png]—

r&m@g@QS—l

Motor Driver L Motor Driver R

Motor L Motor R

Figure 2. Block diagram of motor control system
· Description: PID stands for Proportional Integral Derivative. PID control is a method of smoothly adjusting motors to operate at a certain speed, or a set point. This set point is determined by the approximate encoder count per period corresponding to the desired motor command. An approximate linear relationship between motor command values and the encoder counts in a 0.1 second period were determined empirically. They were found to be the following:

Speed(Left) = 2.81*encoder_cnt + 13

Speed(Right) = 2.94*encoder_cnt + 13

Thus, the desired motor speed inputted to the PID loop is first converted to encoder counts by this equation to make the set point. Right now the PID loop only uses the P term. The I term and D term did not seem to make a difference in the loop. To calculate the proportional term, the Atmega128 finds the error or the difference between the set point and the actual motor speed. The actual motor speed is simply the encoder counts per 0.1 second period. This term can be positive or negative depending on the speed of the motor as compared to the set point. The proportional term increases overshoot and decreases the rise time and steady state error of the response. The settling time is not significantly effected by the proportional term. The coefficient Kp can be adjusted to increase or decrease the affect of the term. It was found that both the motors worked best with coefficients of 0.35.

PLATFORM:

· Koolio stands at nearly 5 feet tall, weighs approximately 60lbs and has a base diameter of 20in. His height is necessary in order for the cameras on either side of his ‘face,’ to read room numbers. To minimize the swaying of the cameras while driving, Koolio’s center of gravity is as low as possible. The motors, batteries, docking circuitry and motor drivers reside in his circular base. These items and the frame make up most of the robot’s weight. The base is shielded by an aluminum skirt, which serves to hide and protect electronics as well as muffle the noise of the motors.

The refrigerator is mounted atop the base. The single board computer and the Atmega128 are stored in a large plastic box on the back of the refrigerator. These items were placed higher on the platform to easier access and to minimize the length of wires running from the higher sensors.

Two aluminum pipes support the LCD, which is mounted on a welded frame. The wireless router is mounted behind the LCD, at the highest point possible on the robot.
ELECTRICAL HARDWARE:

· Power: In order to prevent the processors from being effected by current spikes, a separate battery powers the refrigerator and motors. It is impossible to prevent the rapid change in current because the motors may need change direction or speed quickly if an obstacle is spotted nearby. Although these two batteries share a common ground, the two power supplies are optically isolated from each other, which prevents damage to the circuitry. Also, a third battery was added to power the VGA LCD monitor. This is because the LCD demands more current then the AVR Power supply can handle.
· Switches: Koolio has four switches and an E-stop button. The three red switches (from left to right) turn on/off the electronics, the motors, and the fridge. The bottom switch turns the Atmega128 on/off. Finally, the red E-stop button on top of Koolio turns on/off motor power also.
SBC SOFTWARE:

· The main purpose of this software is display Koolio’s face, interact with Koolio’s website, send the appropriate commands to the Atmega128, communicate with the cameras and run the vision code, and to be later used for the AI software.
· The face is displayed using a program called qiv.
· Images can be grabbed from the cameras using a program called gqcam or streamer.
· Opens a serial port to communicate at a baud rate 9600 with the Atmega128.
· To be completed: The vision code is still in Matlab and needs to be converted to C/C++. The interaction with the Cameras and C needs to be determined.
ATMEGA128 SOFTWARE:

· Obstacle Avoidance: Obstacle avoidance is achieved by varying motor speeds based on sonar values. Only the bottom five sonars and top center sonar are used for obstacle avoidance. The first step was to characterize the sensor values for different object locations. A grid was made with 9”x9” squares. In each of these locations an object was placed and the value of the front bottom four sensors was recorded. From this various states were obtained for where the object was located. The states were separated into directly in front, front but far, directly to the side, and to the front side. Within each category an equation was used to determine the appropriate motor speed, where the left sonars controlled the right motor and right sonars controlled the left motor. If an object was close the opposite motor would slow down to veer or go in reverse to turn in place. This allowed for more continuous motion than simply using threshold values. Finally, if the top center sonar detected a close by object Koolio would go in reverse regardless of the lower front sonar states. Additionally, Koolio would not go in reverse if the back sonar detected a close enough object. See Decision_Eq() for the actual code.

· Navigation in Lab: Once Koolio receives a command from the SBC to proceed to the room number it leaves the docking station and faces the West direction. Also, distance calculation begins by resetting a global encoder counter. A behavior arbiter, Arbiter_Lab(), calls the obstacle avoidance routine and then checks the current bearing if Koolio is not turning or going in reverse. If Koolio is not within 180 degrees of West, it turns until it is facing West. Once Koolio travels the approximate distance from the docking station to a turn point in the lab, Koolio checks its top right sonar. If this sonar is clear of objects then Koolio turns in the South direction towards the entrance of the lab. This provides redundancy with encoder counts and right sonar readings providing feedback for Koolio’s approximate position. Koolio then continues to travel in the southern direction in the same manner as before. Once Koolio travels the approximate distance out the door it checks both of the top sonars. It will continue to travel South until both of the top sonars do not detect close by objects. Thus, it keeps moving until it has cleared the doorway.

· Navigation in Hallway: Once in the hallway Koolio turns East or West depending on which office it is going to. It turns West if going to Schwartz office, and East if going to Arroyo’s office. It then continues to obstacle avoid and wall follows either the left or right wall by calling Arbiter_Hall(). It wall follows using either the top left or right sonar, see the functions Guide_Hallway_Left(), Guide_Hallway_Right(). If it is within the acceptable distance from the wall, it will continually update the motor speed to point Koolio in the East or West direction. This helps Koolio drive in a nearly straight path, which helps ensure a more accurate distance calculation by the encoders.

· Room Detection: Once Koolio reaches the approximate location of the door, it stops moving forward and turns to face the doorway using the compass. It proceeds into the office, and begins obstacle avoidance in the same manner as within the lab. Koolio then makes a 180° turn using the compass and exits the office into the hallway.

ORDERING WEBSITE SOFTWARE:

· Description: The web page currently takes commands to tell which office for Koolio to, sends text for Koolio to say, and gives remote control commands to control Koolio.

You need to include the following files:

#include <sys/types.h> /* for Socket data types */

#include <sys/socket.h> // for socket(), connect(), send(), and recv()

#include <netinet/in.h> /* for IP Socket data types */

#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */

#include <stdlib.h> /* for atoi() */

#include <string.h> /* for memset() */

#include <unistd.h> /* for close() */

To send information with a socket you must know have the following: an ip address for the other end of the socket and the port number that the socket you are sending to is bound to. There are a few setup lines that are needed. These are used to check to see if the string length is the same length as the string that the socket is sending. If these lengths are the same it is assumed that the string was set correct. One check is to make sure that the string is under the max length of 255. You can modify the program to lengthen this though. When you want to send something you must first create the connection. To do this you use the socket function. Then to send a packet you use the sendto function. You put the data you want to send in the variable echoString.

On the receiving end: you have to include the same files. You will also create the socket the same way by using the socket function. The first difference on the receiving end is after the setup code. You must bind the socket to a port. Since you do not know when a client program will send you data you must keep looking for a client to connect to you. To do this you start a loop that runs forever. Inside this loop all you do is keep checking for data coming in. After a read the data will be put in echoBuffer.

· Problems: While using sockets I have not been able to them to compile using C++ where I am able to compile them using C. The sockets themselves only require a few lines.

TO BE COMPLETED:

· Finish vision code and covert to C/C++.
· Interaction between vision code and cameras. Perhaps making the cameras dump raw data or a bit map on a timer.
· Create a bump ring.
· Test recharging station and modify if needed. Create the mechanical ramp for Koolio to use.
Motor

Controllers

Encoders

Compass

Sonar Sensors

Wireless Adapter

Cameras

LCD

Single Board Computer

Atmega 128

